## What is linear Diophantine?

A Linear Diophantine equation (LDE) is an equation with 2 or more integer unknowns and the integer unknowns are each to at most degree of 1. Linear Diophantine equation in two variables takes the form of ax+by=c, where x,y∈Z and a, b, c are integer constants. x and y are unknown variables.

### How do you solve linear Diophantine equations?

One equation The simplest linear Diophantine equation takes the form ax + by = c, where a, b and c are given integers. The solutions are described by the following theorem: This Diophantine equation has a solution (where x and y are integers) if and only if c is a multiple of the greatest common divisor of a and b.

#### How to determine if an ordered pair is a solution?

To determine if an ordered pair is a solution to a system of two equations, we substitute the values of the variables into each equation. If the ordered pair makes both equations true, it is a solution to the system.

**What are diophantine equations used for?**

The purpose of any Diophantine equation is to solve for all the unknowns in the problem. When Diophantus was dealing with 2 or more unknowns, he would try to write all the unknowns in terms of only one of them.

**Who discovered Diophantine equation?**

Diophantus of Alexandria

The first known study of Diophantine equations was by its namesake Diophantus of Alexandria, a 3rd century mathematician who also introduced symbolisms into algebra. He was author of a series of books called Arithmetica, many of which are now lost.

## What is the purpose of Diophantine equation?

### How do you say Diophantine?

Break ‘Diophantine’ down into sounds: [DY] + [OH] + [FAN] + [TYN] – say it out loud and exaggerate the sounds until you can consistently produce them. Record yourself saying ‘Diophantine’ in full sentences, then watch yourself and listen.

#### How did you know that the given ordered pairs is not a solution of the system?

To see if an ordered pair is a solution to an inequality, plug it into the inequality and simplify. If you get a true statement, then the ordered pair is a solution to the inequality. If you get a false statement, then the ordered pair is not a solution.

**What ordered pairs satisfy the system?**

The solution to a system of linear equations is the ordered pair (or pairs) that satisfies all equations in the system. The solution is the ordered pair(s) common to all lines in the system when the lines are graphed. Lines that cross at a point (or points) are defined as a consistent system of equations.

**Why Diophantine is important?**

Diophantus made contributions in mathematics that reverberated throughout history into the present day. Some of the most influential of his work is his number theory, his algebra, and his methods of problem solving.

## Who made Diophantine equation?

History. The first known study of Diophantine equations was by its namesake Diophantus of Alexandria, a 3rd century mathematician who also introduced symbolisms into algebra.

### Cosa è un’equazione diofantea?

In matematica, un’equazione diofantea (chiamata anche equazione diofantina) è un’equazione in una o più incognite con coefficienti interi di cui si ricercano le

#### Quali sono le equazioni diofantee di primo grado?

Le equazioni diofantee di primo grado (lineari) sono oggi ben capite; l’esempio base è la cosiddetta identità di Bézout, ovvero l’equazione + =, che ha soluzioni se e solo se il massimo comun divisore di e è . Un esempio di equazione diofantea quadratica è la cosiddetta equazione di Pell, che prende il nome dal matematico inglese John Pell

**Qual è il punto di vista della geometria diofantea?**

Recentemente, il punto di vista della geometria diofantea, che consiste nell’applicazione delle tecniche della geometria algebrica a questo campo, ha continuato ad ampliarsi; dato che trattare le equazioni arbitrarie è un vicolo cieco, l’attenzione si rivolge alle equazioni che hanno anche un significato geometrico.

**Qual è l’equazione diofantea ax+by?**

L’equazione diofantea ax+by=c ammette soluzioni se esolose(a,b)è un divisore di c. In particolare, se a e b sono primi tra loro, l’equazione ammette sempre soluzioni.